Investigation of optimal display size for viewing T1‐weighted MR images of the brain using a digital contrast‐detail phantom
نویسندگان
چکیده
We clarified the relationship between the display size of MRI images and observer performance using a digital contrast-detail (d-CD) phantom. The d-CD phantom was developed using Microsoft Visual Basic 2010 Express. It had a 512 × 512 matrix in size and a total of 100 holes, whose diameter increased stepwise from 4 to 40 pixels with a 4-pixel interval in the vertical direction; the contrast varied stepwise in the horizontal direction. The digital driving level (DDL) of the back-ground, the width of the DDL, and the contrast were adjustable. These parameters were determined on the basis of the actual T1-weighted magnetic resonance (MR) images of the brain. In this study, the DDL, width, and contrast were set to 85, 20, and 1, respectively. The observer performance study was performed for three different display sizes (30 cm × 30 cm as the enlarged size, 16 cm × 16 cm as the original size, and 10 cm × 10 cm as the reduced size) using a 2-megapixel color liquid crystal display monitor, and it was analyzed using Friedman and Wilcoxon statistical tests. The observer performances for the original display (p < 0.01) and the reduced display sizes (p < 0.01) were superior to that observed for the enlarged size, whereas there was no significant difference between the original display and reduced display sizes (p = 0.31). Evaluation with the digital phantom simulating MR imaging also revealed that the original and reduced display sizes were superior to the enlarged display size in observer performance. The d-CD phantom enables a short-term evaluation of observer performance and is useful in analyzing relation-ship between display size and observer performance.
منابع مشابه
Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملMagnetization transfer or spin-lock? An investigation of off-resonance saturation pulse imaging with varying frequency offsets.
PURPOSE To characterize near-resonance saturation pulse MR imaging on a 1.5-T scanner in order to gain insight into underlying mechanisms that alter tissue contrast and to optimize the technique for neuroimaging. METHODS Off-resonance saturation pulses were applied to T1-weighted, spin-density-weighted, and T2-weighted sequences at frequency offsets ranging from 50 Hz to 20,000 Hz down field ...
متن کاملOptimization of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training ANFIS with different repetitions
Introduction: One of the leading causes of death among people is brain tumors. Accurate tumor classification leads to appropriate decision-making and providing the most efficient treatment to the patients. This study aims to optimize of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) w...
متن کاملEffect of Echo Time on the Maximum Relationship between Contrast Agent Concentration and Signal Intensity Using FLAIR Sequence
Introduction Contrast-enhanced fluid-attenuated inversion recovery (FLAIR) is one of the MRI sequences that can be used for detection and evaluation of pathological changes in the brain. In this work, we have studied the effect of different echo times (TE) on the maximum relationship between signal intensity and concentration of the contrast agent using the FLAIR sequence. Materials and Methods...
متن کاملThe effect of inversion times on the minimum signal intensity of the contrast agent concentration using inversion recovery t1-weighted fast imaging sequence
Background :Inversion recovery (IR) pulse sequences can generate T1-weighted images with a different range of inversion time (TI) to suppress or null the signal intensity (SI) for a specified tissue. In this study, we aimed to investigate the effect of TI values on the concentration of the contrast agent, which leads to a minimum signal intensity, using an inversion recovery T1-weighted 3-dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2016